

United States Department of Agriculture Agricultural Marketing Service Science & Technology

Pesticide Data Program Annual Summary Calendar Year 1993

Contents

	Page No.
Preface	vii
Executive Summa	ryix
Section I.	
Background a	and Organization 1
Section II.	
Sampling Pro	tocol 5
Section III.	
Laboratory O	perations
Section IV.	
Sample Resul	ts and Discussion
Appendices	
Appendix A	Sample Origin by Grower, Packer, or Distributor
Appendix B	Distribution of Residues Detected by Pesticide
Appendix C	Concentration Percentiles vs. Tolerance in Commodity/Pesticide Pairs
Appendix D	Cumulative Distributions of Residue Concentrations for Selected
Annondiv E	Commodity/Pesticide Pairs
Appendix E	Selected Pesticide/Commodity Pairs
Appendix F	Multiple Pesticide Residues Detected
Appendix G	Tolerance Violations Reported

List of Figures and Tables

<u>Figures</u>		Page No.
Figure 1	Overview of PDP Management and Operations	2
Figure 2	Participating States and Their Geographical Distribution Areas	3
Figure 3	Pesticides in PDP	4
Figure 4	Commodity Distribution PercentagesImported vs. Domestic	8

<u>Tables</u>

Table 1	Samples Collected Per Commodity by Each Participating State	7
Table 2A	Number of Samples and Residues Detected, by Commodity (Includes Post-Harvest Applications)	12
Table 2B	Number of Samples and Residues Detected, by Commodity (Excludes Post-Harvest Applications)	13

Preface

In 1991, the United States Department of Agriculture (USDA) was charged with implementing a program to collect data on pesticide residues in food. USDA's Agricultural Marketing Service was appointed to undertake the creation and implementation of such a program, currently known as the Pesticide Data Program (PDP). PDP has been in operation since May 1991, and has published its findings for calendar years 1991 and 1992. This is the summary for calendar year 1993.

PDP was created to collect data on selected pesticides in fresh fruits and vegetables to strengthen the Government's ability to respond to food safety concerns, to protect public health, and to provide the Environmental Protection Agency (EPA) with data needed to assess the actual dietary risk posed by pesticides. EPA registers specific uses for pesticides based on the assumption that all pesticides are used at the maximum allowable amounts for the maximum number of applications. This theoretical risk may significantly exceed the actual risk of pesticide residues in the food supply and jeopardize the registration of pesticides important to American agriculture. The Food and Drug Administration (FDA) protects consumers from pesticide residues by performing tests on commodities suspected of containing violative residues. PDP data significantly upgrade the statistical reliability and extent of information available on the use of pesticides and the presence of pesticide residues in the food supply.

The program began in May 1991 by testing 16 pesticides and 3 commodities in fresh fruits and vegetables. By 1993, PDP had expanded to encompass 42 additional pesticides and 12 commodities. This summary does not include data on processed commodities, as sample collection and analysis did not begin until April 1994. However, research on collection sites and methodologies for analysis of these processed commodities started in late 1993. Findings for processed commodities will be published in the next summary.

It must also be pointed out that, as PDP was going through its first year of operations, the National Academy of Sciences was concluding its report on Pesticides in the Diets of Infants and Children. The report, released in June 1993, identifies the limitations of existing pesticide residue databases. To underline this point, the Academy examined the availability of data for foods highly consumed by nursing and non-nursing infants and concluded that, for most of these food items, there were no comprehensive data on pesticide residues derived from actual sampling. Six of the foods listed in the report were among PDP commodities in 1993. (More recent surveys place seven of the PDP commodities among those highly consumed by children.) Also, PDP sampling and analysis protocols conform to the recommendations made by the Academy in these two areas.

PDP acknowledges the contributions of all sampling and technical staff in the participating States, on whose expertise it relies on a daily basis. The program also thanks Phillip Kott of USDA's National Agricultural Statistics Service, Richard Schmitt and Edward Zager of EPA, and John Jones of FDA, for their cooperation and support.

The data presented in this summary were collected and processed through the efforts of the following:

Agricultural Marketing Service Science Division

United States Department of Agriculture Agricultural Marketing Service, Science Division 14th and Independence Avenue, S.W. Room 3507, South Building Post Office Box 96456 Washington, DC 20090-6456

Director: William J. Franks, Jr. Phone: (202) 720-5231 Fax: (202) 720-6496 Deputy Director: Robert L. Epstein Phone: (202) 720-2158

Residue Branch

United States Department of Agriculture Agricultural Marketing Service Science Division, Residue Branch 8700 Centreville Road, Suite 200 Manassas, VA 22110

Chief: Martha Lamont Phone: (703) 330-2300 Fax: (703) 330-6110 Staff: Carole Babb Kathryn Boyle Melissa Edwards Roger Fry Jeffery Haynes Altaf Rahman Lisa Raiford Robert Smith Tiffanie Smith Paula Todd

Participating State Agencies

California Department of Food and Agriculture California Department of Pesticide Regulations Colorado Department of Agriculture Florida Department of Agriculture and Consumer Services Michigan Department of Agriculture New York Department of Agriculture and Markets North Carolina Department of Agriculture Ohio Department of Agriculture Texas Department of Agriculture Washington Department of Agriculture

Participating State Laboratories

California Department of Food and Agriculture Division of Inspection Services Chemistry Laboratory 3292 Meadowview Road Sacramento, CA 95832

Florida Department of Agriculture and Consumer Services Chemical Residue Laboratory, #3 3125 Conner Boulevard Tallahassee, FL 32399-1650 Florida Department of Agriculture and Consumer Services Division of Fruit and Vegetables 500 3rd Street, Northwest Winter Haven, FL 33880

Michigan Department of Agriculture Laboratory Division 1615 South Harrison Road East Lansing, MI 48823-5224

New York Department of Agriculture and Markets Division of Food Safety and Inspection Food Laboratory State Campus, Building 7 Albany, NY 12235

Texas Department of Agriculture 200 East Horton Street Brenham, TX 77834

Washington Department of Agriculture 2017 South First Street Yakima, WA 98903

USDA Laboratories

United States Department of Agriculture Animal and Plant Health Inspection Service National Residue Monitoring and Analysis Laboratory 3505 25th Avenue, Building 9 Gulfport, MS 39501

United States Department of Agriculture Agricultural Marketing Service Science Division, Eastern Laboratory 645 Cox Road Gastonia, NC 28054

Executive Summary

The Pesticide Data Program (PDP) was implemented by the United States Department of Agriculture (USDA) in May 1991, to collect data on pesticide residues in foods. The data are used by the Environmental Protection Agency (EPA) for their risk assessment process, and for the reregistration and special review of pesticides. PDP has issued summaries of data for calendar years 1991 and 1992. This summary contains PDP findings for calendar year 1993.

During 1993, pesticides monitored by PDP included insecticides, herbicides, fungicides, and growth regulators in fresh fruits and vegetables. Pesticides and commodities were chosen for inclusion in the program based on EPA's data needs and USDA's food consumption surveys.

Planning and policy for PDP are coordinated by an Executive Steering Committee consisting of the following USDA agencies: (1) Agricultural Marketing Service (AMS), (2) National Agricultural Statistics Service (NASS), (3) Economic Research Service (ERS), and (4) Agricultural Research Service (ARS), as well as EPA and the Food and Drug Administration (FDA). PDP's financial and administrative issues are handled by the Science Division of AMS, and the Residue Branch oversees day-to-day sampling and technical procedures.

Program operations are managed through cooperative agreements with nine State agencies, which are responsible for sample collection and analysis. Six of the participating States (California, Florida, Michigan, New York, Texas, and Washington) collected and analyzed samples during 1993. The other three States (Colorado, North Carolina, and Ohio) collected samples, but shipped them to one or more of the other participating laboratories for analysis. Together, these 9 States represent approximately 50 percent of the Nation's population.

PDP was designed to detect, verify, and report low-level concentrations of pesticides in order to determine the actual residue levels to which consumers are exposed. Without actual residue data, risk assessment studies for pesticides are based on the theoretical maximum amounts of pesticide use. Such studies may overstate the exposure to consumers and may jeopardize EPA's registration of pesticides important to American agriculture. Consequently, PDP data are collected as close to the point of consumption as possible; and, to emulate consumer practices, only the edible portion of the sample is analyzed. PDP samples are collected without regard for commodity origin or variety, and generally reflect what is available to the consumer throughout the year.

An automated information management system has been designed by the Residue Branch to meet the data storage needs of PDP. This system allows for electronic transmission of data from the laboratories to the database maintained by the Branch.

Enhancements to PDP's sampling protocol were developed by NASS and introduced in January 1993. The enhanced protocol takes into account the different volumes of produce that are distributed annually by each sampling site, and removes a potential source of bias for estimates of residues in PDP commodities.

A total of 7,328 samples of 12 commodities (apples, bananas, broccoli, carrots, celery, grapefruit, grapes, green beans, lettuce, oranges, peaches, and potatoes) were analyzed. Of these samples, 1,237 (16.9 percent) were imports, most of which were limited to bananas, grapes, peaches, and green beans. Samples collected originated in 38 States and 15 foreign countries. The number of pesticides routinely monitored increased during 1993. This increase led to a higher number of detections and, in some cases, residues of several pesticides were found in individual samples. However, most of these detections continue to be at very low levels--substantially below tolerances. For example, 94 percent of all residues detected were below 1 part per million (ppm), 60 percent were below 0.1 ppm, and about 10 percent were below 0.01 ppm.

Of the 7,328 samples analyzed, 110 samples (1.5 percent) were found to contain 114 violative residues (4 samples had 2 violative residues). Violations were reported in 30 samples (2.4 percent) of imported commodities, and in 80 samples (1.3 percent) of domestic commodities. Of the 114 violations reported, 100 (88 percent) were for residues where no tolerance was established for that particular commodity/pesticide pair.

PDP data also indicate that post-harvest application of fungicides and growth regulators contributes significantly to the number of residues detected in bananas, grapefruit, oranges, and potatoes, and, to a lesser extent, in apples. Postharvest applications accounted for 3,441 detections (33 percent) of the total 10,329 residues detected. The pesticide most frequently found (1,689 detections) was the fungicide thiabendazole, representing about 16 percent of all detected residues.

PDP continuously strives to improve methodologies for the collection, testing, and reporting of data. PDP data are available to EPA and other Federal and State agencies charged with regulating and setting policies on the use of pesticides. The data are also available to nongovernment organizations upon request.

Pesticide Data Program (PDP) Annual Summary Calendar Year 1993

This summary presents PDP data for calendar year 1993, and consists of the following four sections: (I.) Background and Organization, (II.) Sampling Protocol, (III.) Laboratory Operations, and (IV.) Sample Results and Discussion.

I. Background and Organization

Instead of creating a new departmental organization to implement the Pesticide Data Program (PDP), the United States Department of Agriculture (USDA) charged four of its agencies with identifying their respective expertise and needs, then melded them into a comprehensive program. The four USDA agencies are the Agricultural Marketing Service (AMS), the National Agricultural Statistics Service (NASS), the Economic Research Service (ERS), and the Agricultural Research Service (ARS). AMS was selected as the lead agency to coordinate and implement the various facets of the residue program, and manage all program operations. NASS provides statistically reliable data on chemical usage at the State level, and collects economic input data that link chemical usage with economic characteristics. ERS analyzes AMS and NASS data to understand producer behavior and to determine the impact that various production practices and policies might have on the Nation's agricultural production, the food supply, and consumers. ARS conducts nationwide surveys of individual food intake and household use, and is developing a Food Grouping System to translate data on foods as consumed into forms that can be linked with pesticide residue data.

As the lead agency for implementing PDP, AMS selected its Science Division to oversee policy planning and program development. The Residue Branch of the Science Division is responsible for coordinating and managing day-to-day program activities with the participating State and Federal facilities. Figure 1 provides an organizational flowchart of PDP management and operations, including a breakdown of the three major program components--sample collection, laboratory analysis, and database management.

As illustrated in Figure 1, PDP sampling and analytical operations are performed by nine States (California, Colorado, Florida, Michigan, New York, North Carolina, Ohio, Texas, and Washington) through agreements with their respective State agencies. Thus, a significant amount of PDP's financial resources (75 percent) goes directly to the States to cover their operating expenses. An additional 10 percent of PDP funding is given to USDA facilities to support State testing activities. These laboratories provide support services to the States by performing certain selective residue analyses that the States agreed were best conducted by Federal laboratories.

Four States in the program have a net outflow of produce to other States. These are: (1) California which ships produce to Hawaii and Nevada; (2) Colorado - to Wyoming and New Mexico; (3) New York - to the New England States and New Jersey; and (4) Washington - to Alaska. This is partly due to the proximity of warehouses and terminal markets to retail distribution centers. For the other five States (Florida, Michigan, Ohio, North Carolina, and Texas) the volume of produce coming in and Figure 1. Overview of PDP Management and Operations

Figure 2. Participating States and Their Geographical Distribution Areas

going out of the State is about the same. For example, Florida produce shipped to Georgia is offset by produce entering the Florida panhandle from the Mobile, Alabama, area.

Figure 2 shows the States participating in the program, which together represent about 50 percent of the Nation's population. Also shown are the nine other States (Alaska, Connecticut, Hawaii, Massachusetts, Nevada, New Jersey, New Mexico, Vermont, and Wyoming) where, as indicated above, a significant amount of produce is directly marketed from the participating States. Although these additional States are not active program participants, PDP data will apply to a large portion of their population as well.

AMS works closely with EPA on a regular basis to develop the list of pesticides and commodities targeted for data collection by PDP. Commodities chosen for inclusion in the program are among those most prevalently consumed by the American public. Twelve commodities (apples, bananas, broccoli, carrots, celery, grapes, grapefruit, green beans, lettuce, oranges, peaches, and potatoes) were sampled and analyzed throughout 1993. The pesticides requested by EPA consist mainly of those whose toxicity is under evaluation by the agency (pesticides with acute and chronic endpoints, including suspected carcinogens) and are revised periodically to address current EPA data needs. Figure 3 provides a list of all the pesticides included in PDP during 1993.

Figure 3. Pesticides in PDP

Detected by Multiresidue Methods (MRMs)

EPA Targeted Pesticides - 29

Acephate Aldicarb Atrazine* Azinphos-Methyl Bromoxynil* Chlorothalonil Chlorpyrifos Diazinon Dichlorvos* Dicloran Dicofol Disulfoton Endosulfans Ethion Fenamiphos* Hexachlorobenzene* Iprodione Lindane Malathion Methamidophos Methidathion Methomyl + Thiodicarb** Methoxychlor Mevinphos Oxamyl Parathion-Methyl Pentachlorobenzene Permethrins Quintozene (PCNB)

Other Pesticides Found - (26)

Anilazine Benfluralin Captan Carbaryl Carbofuran + 3 OH Carbofuran Chlorpropham DCPA DDE + DDT + TDE Demeton-S Dimethoate and Omethoate Diphenylamine Imazalil Linuron Methiocarb Myclobutanil O-Phenylphenol Ovex Parathion Phorate Sulfone Phosmet Propargite*** Thiabendazole Toxaphene Trifluralin Vinclozolin

Detected by Selective Residue Methods (SRMs)

EPA Targeted Pesticides - 3 2,4-D, Benomyl, and Formetanate

* Residues of these pesticides were not detected in 1993.

** As the Methomyl Metabolite.

*** Propargite became a required pesticide in October 1993.

An extensive information management system was developed to compile and store PDP data, which has been enhanced over time to allow for customized query capability and standardized data summaries. The PDP database also allows for electronic transmission of data from the individual laboratory facilities to the Residue Branch.

PDP is different from other Federal and State regulatory monitoring programs in that participation in the program is completely voluntary. No comparisons should be made between PDP and these enforcement programs because of the differences in mission and operational structure. Enforcement programs are designed primarily to target tolerance violations; therefore, their sampling protocols are not required to be statistically defensible. Also, as specified by Federal regulations, samples are analyzed as the unwashed. whole, raw commodity--that is, with the peel or skin intact; and only tolerance violations are confirmed by testing laboratories. PDP is designed to produce virtually unbiased, objective data that can be used for risk assessment; therefore, the sampling protocol is required to be statistically defensible. PDP samples are prepared as if for human consumption, and all residues are verified--regardless of the level of detection.

Another major distinction between the two types of programs is the quick turnaround time required for analysis of enforcement samples. Many programs require that the sampled commodity be detained at the distribution facility while awaiting the results of the analysis. PDP places emphasis on searching for residues at the lowest detectable levels, rather than on quick sample turnaround. Analysis of PDP samples may take approximately 1 to 2 months, and does not affect commodity distribution.

II. Sampling Protocol

The PDP sampling protocol, in place from the beginning of the program through December 31, 1992, was objective and random in nature, and allowed users of the data to make reasonably good estimates of pesticide residues in the food supply.

However, since PDP data would ultimately be used for making national inferences for dietary risk assessment, AMS, with the assistance of NASS, developed an enhanced protocol that was implemented in January 1993. The revised, statistically defensible protocol allows for making nearly unbiased estimates of residues for commodities collected in the participating States. It also makes it possible to quantify the accuracy of these estimates for both the participating States and the Nation as a whole.

Increasing the number of participating States for sample collection, from 6 to 9, raised the proportion of the Nation's population represented by PDP data to approximately 50 percent. This percentage may be even higher when the amount of produce distributed from the nine participating States directly to other States is taken into account. (See Figure 2, Participating States and Their Geographical Distribution Areas.)

Other amendments to the protocol for 1993 included: (1) increasing the number of samples collected per commodity each month from 52 to 60; (2) providing the States with Standard Operating Procedures (SOPs) for developing and maintaining sampling documentation and performing sample collection; (3) training for Sampling Managers on SOP-related requirements; and (4) performing onsite reviews of each State's sampling program to confirm compliance with the SOPs, and make recommendations for improvements.

Statistical Sampling Procedures

The participating States were assigned a number of samples to collect per commodity each month based on the population of the State. The sample numbers remained the same for all of 1993, and were as follows: California-14, Colorado-2, Florida-7, Michigan-6, New York-9, North Carolina-4, Ohio-6, Texas-8, and Washington-4-for an annual total of 720 samples per commodity. Sample size was 5 pounds for each applicable testing facility, and the following 12 commodities were included in the program: apples-AP, bananas-BN, broccoli-BR, carrots-CR, celery-CE, grapefruit-GF, grapes-GR, green beans-GB, lettuce-LT, oranges-OG, peaches-PC, and potatoes-PO. Each State is responsible for compiling and updating a list of sampling sites. The number of locations on a State's sampling site list varies greatly, from 29 in Washington to 358 in California. The majority of PDP sampling sites are either terminal markets or large chain store distribution centers because they are the last stopover before produce reaches retailers, and, ultimately, consumers. PDP data are collected as close to the consumer as possible, because this provides a better picture of actual exposure to pesticide residues by taking into account pesticide degradation that occurs during transit and storage. Also, sampling at these locations provides information on post-harvest applications of fungicides and growth regulators.

The selection of sampling dates and sites was performed by the States quarterly, and sampling plans were provided to the Residue Branch. State Sampling Managers were given the option of obtaining assistance and advice from USDA's NASS on developing their sampling plans. particularly with regard to implementing a more statistically defensible and accurate method of site selection. This method required that each site be given a "size" factor based on the amount of produce distributed annually. For instance, a sampling site that distributes 100,000 pounds of produce might be given a size of "10," and a site that distributes 10,000 pounds of produce might be given a "1." This would result in the larger site (distributing 100,000 pounds) being 10 times more likely to be selected in a given month than the smaller site (distributing 10,000 pounds). The volume of produce distributed by the sampling sites varies depending on their size and geographic location. This is true within a State, as well as among the nine participating States.

States were allowed to collect two different commodities at the same site on the same date. However, a site could not be sampled twice within 1 month for a single commodity. States were asked to collect all samples of the same commodity on one date, or within two consecutive dates. Collectors were also asked to ship the samples as soon as possible after collection, to ensure they would arrive at the appropriate testing facility(ies) within 24 hours. Sample dates continued to be selected at random.

Participating States were provided with Sample Information Forms, on which to collect the sample data. Four items of information on the form are combined to generate a unique identification number for each sample. These items are: (1) the 2-letter State postal code where the sample was collected; (2) the date of collection: (3) the site number: and (4) the 2-letter commodity code. A 3-digit numerical code is used for the site numbers--which are assigned by the States. The 2-letter commodity codes are determined by the Residue Branch, and are used by all States. Other pertinent information included on the form is: (1) whether the sample is domestic or imported; (2) if imported, country of origin; (3) name of sampling site, grower, and/or packer; and (4) a list of potential or known postharvest applications.

Synopsis on Sample Collection

A total of 7,328 samples of fresh produce was collected during 1993. As shown in Table 1, the number of samples collected per State was: California - 1,697, Colorado - 246, Florida - 847, Michigan - 743, New York - 1,090, North Carolina - 501, Ohio - 742, Texas - 1,003, and Washington - 459.

				Co	mmodi	ty							
State	AP	BN	BR	CE	CR	GB	GF	GR	LT	OG	PC	PO	Total
California	149	138	149	152	149	140	146	139	147	144	95	149	1697
Colorado	22	22	22	22	22	18	21	21	22	21	11	22	246
Florida	77	68	74	68	74	69	75	76	77	73	39	77	847
Michigan	66	61	64	64	62	59	64	64	65	65	44	65	743
New York	99	95	96	92	97	81	95	97	97	97	46	98	1090
North Carolina	44	44	44	43	44	41	44	44	44	43	22	44	501
Ohio	66	66	66	65	64	56	66	65	66	64	33	65	742
Texas	88	86	82	87	87	81	84	87	87	88	62	84	1003
Washington	43	40	43	44	43	21	42	38	42	43	17	43	459
Total	654	620	640	637	642	566	637	631	647	638	369	647	7328
Commodities AP - Apples BN - Bananas BR - Broccoli CE - Celery		GF - GR - LT - I OG -	Grapef Grapes _ettuce Orange	ruit S									

Table 1. Samples Collected Per Commodity by Each Participating State

These figures are less than the total number of assigned samples for 1993 due to the unavailability of product at either the original or alternate sampling site. This was often caused by the unique growing season of each commodity. For example, 51 percent of the 720 peach samples were unavailable at the time of collection, particularly during the winter months.

PC - Peaches

PO - Potatoes

CR - Carrots

GB - Green Beans

Figure 4 shows the total number of samples per commodity, and the percentage of each that were either domestic or imported.

Appendix A is divided into three parts (sample origin as domestic, imported, and unknown) and lists the number of samples originating (grown, packed, or distributed) from each State or country per commodity. As indicated, samples collected during 1993 originated from the 9 participating States, 29 other States, and 15 foreign countries. The figures listed in the last two columns of Appendix A are the total number of samples per State/country, and the percentage this number represents of all samples collected. The total number of samples per commodity, and percentage of all 1993 samples, is listed in the last row of each part.

Because PDP samples represent market availability of produce to the consumer throughout the year, and the PDP sampling protocol does not require sampling a specific number of imports, the total samples collected for the year may not always correlate to the percentage of actual imports for a particular commodity.

III. Laboratory Operations

During 1993, nine laboratories (seven State and two Federal) were performing analyses for PDP. These laboratories are equipped with stateof-the-art instrumentation capable of detecting residues at very low levels. The laboratory staff receives intensive training and must demonstrate analytical proficiency on an ongoing basis. Senior scientists continuously test new technologies and develop new techniques to improve the levels of detection. Changes in methodology are validated and documented in accordance with PDP Standard Operating Procedures before being implemented.

PDP required participating laboratories to monitor 32 compounds (plus metabolites where applicable) for which EPA needs data. Of these, 29 are detectable by multiresidue methods (MRMs) and 3 can be detected only by selective residue methods (SRMs). Since SRMs are resource intensive, this type of analysis was performed only at selected laboratories and in specific commodities as indicated below:

Laboratories Performing SRMs

- <u>NRMAL, Gulfport, MS</u> Pesticide: Benomyl Commodities: Apples, Bananas, Broccoli, Green Beans, and Peaches
- 2. <u>AMS Eastern Laboratory, Gastonia, NC</u> Pesticide: Formetanate Commodities: Apples, Oranges, and Peaches
- 3. <u>NRMAL, Gulfport, MS and other Selected</u> <u>State Laboratories</u> Pesticide: 2,4-D Commodities: Apples, Grapefruit, Grapes, Oranges, Peaches, and Potatoes

In addition to the EPA-targeted pesticides, laboratories routinely tested for approximately 26 other compounds that are detectable by MRMs. For a complete list of pesticides, see Figure 3 in Section I.

Quality Assurance Program

The main objectives of the quality assurance/quality control (QA/QC) program are to ensure the reliability of PDP data, and the performance equivalency of the participating laboratories.

To accomplish these objectives, PDP established SOPs based on EPA's Good Laboratory Practices. PDP SOPs outline program requirements that all facilities must follow. Preliminary QA/QC review procedures are performed on-site by each laboratory's Quality Assurance Unit (QAU). Final review procedures are performed by AMS staff, who are responsible for collating and reviewing data for conformance with SOPs. Additionally, AMS staff monitor the participants' performance through proficiency samples and on-site visits, during which records are reviewed and laboratory operations are observed.

PDP's quality assurance program encompasses five elements:

1. <u>Proficiency Check Samples</u> - All facilities are required to participate in PDP's Check Sample Program. Check samples are issued to laboratories performing analysis with MRMs and/or SRMs. Periodically, one to four prepared commodities, containing pesticide(s) of known quantities, are sent to the participating laboratories and tested under the same conditions as routine samples. The resulting data are used to determine performance equivalency among the testing laboratories, and to evaluate individual laboratory performance.

2. <u>Quality Control</u> - Since quality control requirements are the same for one sample as for several samples, it is more economical and efficient to collect and process the samples as a set. Laboratories are permitted to refrigerate incoming samples of the same commodity for up to 72 hours, to allow for different sample arrival times from the collection sites. PDP quality control guidelines require that samples be tested as part of an analytical set, which includes the sample set and the following components: **a. Reagent Blank:** An amount of distilled water, equivalent to the natural moisture content of the commodity, is run through the entire analytical process to determine glassware cleanliness and system integrity.

b. Matrix Blank: A previously analyzed sample of the same commodity, which contains either very low concentrations of known residues or no detectable residues, is divided into two portions. The first portion is used to give background information on naturally occurring chemicals, and the second one is used to prepare a matrix spike.

c. Matrix Spike(s): A portion(s) of matrix blank is spiked with all pesticides of interest to PDP, prior to extraction. The matrix spike is used to determine the accuracy of the analyst and instrument performance.

d. Process Control Spike: A compound of physical and chemical characteristics, similar to those of the pesticides being tested, is used to evaluate the analytical process on a sample-by-sample basis. Each of the analytical set components, except the reagent and matrix blanks, is spiked with process controls.

e. Storage Spikes: If a sample set is going to be frozen as a homogenate for more than 72 hours prior to analysis, analysts are required to prepare storage spikes. Storage spikes provide information on whether degradation has occurred while the sample was frozen, and are prepared in the same manner as matrix spikes. However, they do not replace the requirement to run a fresh matrix spike at the time of analysis.

3. <u>Method Performance and Confirmation</u> -Laboratories are required to determine the limits of detection (LOD) and limits of quantitation (LOQ) for each commodity/pesticide pair. LODs depend on matrix, analyte, and detector used, and range from 0.001 to 0.150 ppm. (*Information on specific LODs and LOQs is available upon request.*) Confirmation by mass spectrometry, or a suitable alternate detection system, is required for all initial findings. If a finding is violative, the sample is reanalyzed in duplicate from the frozen homogenate, along with the appropriate blanks and a spike of the violative residue at the suspected level.

4. <u>Standard Operating Procedures</u> - Written SOPs are in place to provide uniform administrative, sampling, and laboratory procedures. SOPs are revised annually to accommodate changes in the program. Before submission, data are reviewed by each QAU for completeness and adherence to PDP requirements.

5. <u>On-Site Reviews</u> - On-site reviews are performed to determine compliance with SOPs. Improvements in sampling, chain of custody, recordkeeping, and laboratory procedures were made as a result of the on-site reviews.

Sample Preparation

Upon arrival at the testing facility, samples are visually examined for acceptability and discarded if determined to be inedible (e.g., decayed, extensively bruised). Accepted samples are then prepared emulating the practices of the average consumer, to more closely represent actual exposure to residues. Samples are prepared as follows: (1) apples and peaches are washed and cored; (2) bananas, grapefruit, and oranges are peeled; (3) broccoli, celery, and lettuce are washed and the inedible portions are removed; (4) green beans and grapes are washed and stems are removed; and (5) carrots and potatoes are washed.

Samples are homogenized using choppers and/or blenders and separated into analytical portions (aliquots) for analysis. If testing cannot be performed immediately, the entire analytical set (sample set plus all quality control samples) is frozen at -40° C, or lower, according to PDP's QA/QC requirements. Surplus aliquots, not used for the initial testing, are retained frozen in the event that replication of analysis or verification testing is needed.

Sample Analysis

Variations of the Luke extraction procedures developed by FDA are used by Florida, Michigan, New York, and Texas. California and Washington use the multiresidue method developed by the California Department of Food and Agriculture. These two methods were determined to produce equivalent data for PDP analytical purposes. Sample extraction and cleanup preparation procedures, to achieve the levels of detection required by the program, are based on organic solvent/partition procedures. Selective residue methods, used for 2,4-D, benomyl, and formetanate, were independently validated by the laboratory(ies) performing analysis.

Various types of chromatography are used for the initial identification and quantitation of pesticides. Confirmation is accomplished by mass spectrometry or by alternate detection systems when applicable. Confirmation is deemed necessary due to the complexity of commodity matrices and the low concentration levels of detected residues. The confirmatory analysis provides an extra measure of confidence in the identification of both the pesticide residue and its concentration.

IV. <u>Sample Results and</u> <u>Discussion</u>

Sample Results

Because the number of pesticides routinely monitored by PDP increased during 1993, the number of detections also increased. However, these detections continue to be at levels substantially below tolerances. For example, 94 percent of all residues detected were below 1 ppm, 60 percent were below 0.1 ppm, and about 10 percent were below 0.01 ppm. The low levels of detections are also illustrated in Appendix B, C, D, and E.

Appendix B shows the distribution of residues

per pesticide per commodity. The minimum and maximum concentrations detected, tolerances, and violations are also shown.

Appendix C shows the distribution of residues for PDP commodity/pesticide pairs with residue detections in at least 10 percent of the samples. As seen in this appendix, for most of these selected commodity/pesticide pairs, residues were detected in the very low ppm ranges--substantially lower than tolerances. For example, for thiabendazole/bananas, 90 percent of the detections were at 0.13 ppm or below. Similarly, 75 percent of detections were at 0.075 ppm or lower, and 50 percent were at 0.017 ppm or lower. A ratio of the 90th percentile to tolerance (0.40 ppm) is shown in the last column as equal to 0.33. In other words, the amount of residue detected is 33 percent of the tolerance.

In Appendix D, the distribution frequency has been converted into a cumulative distribution in which the percentages of samples with residue detections at or below specific concentrations are displayed. (This was done for 8 of the 12 commodity/pesticide pairs with detections in at least 40 percent of the samples.) The lowest percentile graphed indicates, approximately, the percent of samples without detectable residues. Using the same bananas/thiabendazole pair, approximately 45 percent of all detections were at or below the LOD of the reporting laboratory, 75 percent of the samples were at or below 0.075 ppm, and 95 percent were at or below 0.19 ppm. The highest percentile graphed is the 99th, and does not include the highest concentration detected. (Inclusion of the highest concentration causes graph distortion, which obscures concentrations in the low ranges.) Tolerances and highest concentrations detected are shown in the graphs' boxes.

Appendix E shows the percentages of occurrences at 8 separate concentration ranges for pesticide/commodity pairs with residue detections in at least 25 percent of the samples. The graphs' boxes show the number of samples tested, the number and percentage of samples with detections for each individual pair, and the minimum and maximum concentrations detected. For example, for endosulfans/green beans, 59.7 percent of samples had no detectable residues, 5.5 percent had residues between 0.001 and 0.009 ppm, 7.6 percent had residues between 0.010 and 0.025 ppm, etc.

Post-Harvest Applications

PDP collects samples at points in the distribution chain where produce is ready to be released to the consumer, and where post-harvest applications of pesticides have already taken place. Most post-harvest applications are limited to fungicides (to control mold and fungus) and growth regulators (to prevent sprouting). PDP compounds with mostly post-harvest applications are: diphenylamine, o-phenylphenol,

thiabendazole (fungicides), and chlorpropham (growth regulators). Other compounds with postharvest uses on selected commodities are the fungicides dicloran (carrots and peaches) and imazalil (citrus). Therefore, residues from these pesticides can be assumed to result from postharvest uses. PDP data indicate that post-harvest applications contribute significantly to the number of residues detected in bananas, grapefruit, oranges, and potatoes, and, to a lesser extent, in apples. Table 2A shows totals of samples analyzed, number and percentage of samples with residues, number of different residues, and total residue detections for each commodity. Table 2B displays the same information, excluding residues resulting from post-harvest applications.

Table 2A. Number of Samples and Residues Detected, by Commodity (Includes Post-Harvest Applications)

Commodity	Total Samples Analyzed	Samples with Residues Detected	% of Samples with Residues Detected	Different Residues Detected	Total Residue Detections	
Apples	654	634	97	33	2010	
Bananas	620	379	61	6	405	
Broccoli	640	162	25	15	189	
Carrots	642	416	65	21	687	
Celery	637	595	93	26	1429	
Grapefruit	637	460	72	13	703	
Grapes	631	472	75	26	981	
Green Beans	566	371	66	25	822	
Lettuce	647	327	51	19	532	
Oranges	638	507	79	19	955	
Peaches	369	337	91	29	887	
Potatoes	647	511	79	19	729	

Number of Samples Analyzed = 7328

Number of Samples with Residues Detected = 5171

Percent with Residue Detections = 70.6%

Total Number of Residue Detections = 10,329

Total Number of Different Pesticides Detected = 58

Table 2B. Number of Samples and Residues Detected, by Commodity (Excludes Post-Harvest Applications*)

Commodity	Total Samples Analyzed	Samples with Residues Detected	% of Samples with Residues Detected	Different Residues Detected	Total Residue Detections
Apples	654	542	83	27	1217
Bananas	620	7	1	4	7
Broccoli	640	162	25	15	189
Carrots	642	413	64	18	673
Celery	637	578	91	24	1296
Grapefruit	637	92	14	10	107
Grapes	631	465	74	23	947
Green Beans	566	370	65	22	806
Lettuce	647	326	50	18	531
Oranges	638	179	28	16	211
Peaches	369	329	89	25	716
Potatoes	647	160	25	15	188

Number of Samples Analyzed = 7328

Number of Samples with Residues Detected = 3623

Percent with Residue Detections = 49.4%

Total Number of Residue Detections = 6888

Total Number of Different Pesticides Detected = 52

* Excludes Residues of Chlorpropham, Dicloran (carrots and peaches), Diphenylamine, Imazali (citrus), o-Phenylphenol, and Thiabendazole

As these tables indicate, the 5 fungicides listed above, along with chlorpropham, accounted for 3,441 detections (33 percent of the number of residue detections). The pesticide most frequently found (1,689 detections) was the fungicide thiabendazole, representing about 16 percent of all detections.

Environmental Contaminants

DDT, DDE, and TDE

A total of 7,328 samples were screened for DDT and its metabolites--DDE and TDE. Use of DDT has been prohibited in the United States since 1972. However, due to the persistence of this chemical in the environment, residues of this insecticide, and/or its metabolites, were found in approximately 5.6 percent of all samples tested. Residues were found primarily in root crops and none were above action levels.

Acid Herbicides

2,4-D and Bromoxynil

A total of 3,267 samples were tested for 2,4-D, and 869 were tested for bromoxynil. (Bromoxynil was removed from the testing profile at the end of March 1993.) Commodities tested were apples, grapefruit, grapes, oranges, peaches, and potatoes. Approximately 2.3 percent of the samples tested were found to contain residues, all well below tolerance levels. No residues of bromoxynil were detected in any of the samples tested.

Multiple Residues Detected

Multiple residues on a commodity could derive from various sources, such as applications of different pesticides to the crop during a growing season, spray drift, or environmental contamination. The need to evaluate the effects of residues of different compounds in single samples was pointed out by the National Academy of Sciences in its 1993 report *Pesticides in the Diets of Infants and Children*. In this report, the academy recommended that, "When using multiresidue scans to detect different compounds in one scan of one food sample, all results should be recorded together. This will make possible more accurate evaluation of exposure distributions for multiple chemicals."

PDP's rigorous analytical standards have resulted in the detection of residues at very low concentrations (less than 0.05 ppm for most pesticides). These residues have been frequently found in the same sample, as illustrated in Appendix F. As shown in this appendix, samples are grouped by the number of pesticides detected in individual samples, the number and percentage of samples found in each group, the number of different residues detected, and the three most prevalent pesticides. For example, in celery, there were six samples (or 0.9 percent of samples analyzed), each containing six different pesticides. In this case, the three most frequently detected pesticides were: permethrins with six detections, chlorothalonil with five, and oxamyl with five. PDP data could be used to assess the potential effects of simultaneous exposure to multiple pesticides with a common mechanism of action.

Non-Detected Residues

Approximately 30 percent of the samples analyzed had no detectable levels of pesticide residues.

If post-harvest applications of pesticides are

excluded, the percentage becomes approximately 50. Non-detected residues can result because all analytical methods and instruments have a limit below which analytes cannot be detected even if present. Non-detected residues could also occur because a pesticide was not applied, because it dissipates rapidly, or for various other reasons.

Of the 32 EPA-targeted pesticides; atrazine, bromoxynil, dichlorvos, fenamiphos, and HCB were not detected in any of the 7,328 samples. Atrazine, bromoxynil, and HCB have no registered uses for any of the PDP commodities. Dichlorvos does not have registered uses in PDP commodities either, although it could be present as a breakdown product of the pesticide naled (naled is registered for use in all 12 commodities). However, dichlorvos and fenamiphos dissipate fairly quickly, and likely were not present at detectable levels at the time samples were collected.

■ Tolerance Violations

Tolerances are defined under Section 408 of the Federal Food, Drug, and Cosmetic Act as the maximum quantity of a pesticide residue allowable on a raw agricultural commodity. Tolerances are established by EPA for all pesticides used on food crops. A violation occurs when a residue is found which exceeds the tolerance level, or when a residue is found for which there is no tolerance for that particular crop. As shown in Appendix B, the tolerances for the commodity/pesticide pairs cover several orders of magnitude--from as low as 0.01 ppm for peaches/chlorpyrifos, to as high as 100 ppm for lettuce/captan.

With the exception of meat, poultry, and egg products, for which USDA is responsible, tolerances for all other foods are enforced by FDA. Although PDP samples are not collected for enforcement purposes, all tolerance violations are reported to FDA regional and headquarter offices. This is done in accordance with a Memorandum of Understanding between USDA and FDA, for the purpose of pinpointing areas where closer surveillance may be required. Enforcement action by FDA on PDP samples is not generally a viable option due to the time lag from sample collection to data reporting.

Appendix G shows that of the 7,328 samples analyzed, 110 samples (1.5 percent) contained 114 violative residues. Violations were reported in 30 samples (2.4 percent) of imported commodities, and in 80 samples (1.3 percent) of domestic commodities. In some cases, these residues were detected in separate subsamples by both the State and Federal laboratories, using different analytical methods (MRMs and SRMs). Appendix G also shows double violations (2 violative residues in the same sample) in 4 of the samples tested, and 14 samples with residues exceeding the tolerance. The remainder of the violations reported, 100 (88 percent), were for residues where no tolerance was established for that particular commodity/pesticide pair. For this last group (no tolerance established), most of the violative residues were at levels between the LOD and LOO, and were reported as "below quantifiable levels."

Synopsis

In 1993, a total of 7,328 samples were analyzed using MRMs. As stated before, analysis using SRMs was performed in certain commodities only. Accordingly, 2,552 samples were tested for benomyl, 3,267 were tested for 2,4-D, 869 for bromoxynil, and 415 for formetanate. Pesticides detected included insecticides, herbicides, fungicides, and growth regulators. Also detected were DDT and its metabolites, although their presence is almost certainly due to environmental contamination, not the result of prohibited crop application. Eightyone percent of samples tested were domestic, and 17 percent were imported. Of all samples tested, 1.5 percent were found to contain violative residues, although most of these were for residues where no tolerance was established. It was also observed that, for certain commodities, postharvest applications contribute significantly to the number of residues detected. Overall, levels of residues detected were substantially below tolerances, with 94 percent of all residues detected below 1 ppm.

The United States Department of Agriculture (USDA) prohibits discrimination in its programs on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, and marital or familial status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact the USDA Office of Communications at (202) 720-5881 (voice) or (202) 720-7808 (TDD).

To file a complaint, write the Secretary of Agriculture, U.S. Department of Agriculture, Washington, DC 20250, or call (202) 720-7327 (voice) or (202) 720-1127 (TDD). USDA is an equal employment opportunity employer.

June 1995

APPENDIX A. SAMPLE ORIGIN BY GROWER, PACKER, OR DISTRIBUTOR (Number of Samples /Commodity)

Part 1.	AP	BN	BR	CE	CR	GB	GF	GR	LT	OG	PC	PO	No. of Domestic	% of Total
States = 38					Dom	nestic	Samp	oles						
Alabama												1	1	<0.1
Arizona			15		4		37	8	16	5		1	86	1.2
Arkansas			1										1	<0.1
California	64		526	445	414	95	198	311	568	467	139	98	3325	45.4
Colorado	13		7	5	18	4			5	1		37	90	1.2
Connecticut			1									1	2	<0.1
Delaware												4	4	0.1
Florida			2	80	39	207	294		11	126	4	19	782	10.7
Georgia						32				1	13	1	47	0.6
Idaho	12										1	126	139	1.9
Illinois	1											2	3	<0.1
Indiana												2	2	<0.1
Maine	3		5									16	24	0.3
Maryland	1					2							3	<0.1
Massachusetts	8											3	11	0.2
Michigan	47		3	28	76	3	1		4		6	31	199	2.7
Minnesota				1								14	15	0.2
Missouri	4											1	5	0.1
Nebraska												1	1	<0.1
Nevada												5	5	0.1
New Jersey	1		1		1	6			2		7	1	19	0.3
New Mexico												2	2	<0.1
New York	70		7	10	19	10	1	6	7	1	1	46	178	2.4
North Carolina	8					16	1					4	29	0.4
North Dakota												9	9	0.1
Ohio	11			3		21		1	1			18	55	0.8
Oklahoma												2	2	<0.1
Oregon	5				2						1	53	61	0.8
Pennsylvania	6		1								3	1	11	0.2
South Carolina	1		1								20		22	0.3
Tennessee						26							26	0.4
Texas	4		21	25	19	14	75	2	3	16	4	33	216	2.9
Utah	3				1							1	5	0.1
Vermont	3												3	<0.1
Virginia	8		1			3							12	0.2
Washington	354		28	27	22	7		2	25		15	75	555	7.6
West Virginia	3												3	<0.1
Wisconsin												24	24	0.3
No. of Domestic	630	0	620	624	615	446	607	330	642	617	214	632	5977	
% of Total (nearest %)	96	0	97	98	96	79	95	52	99	97	58	98		81.6

APPENDIX A. SAMPLE ORIGIN BY GROWER, PACKER, OR DISTRIBUTOR (Number of Samples /Commodity)

Part 2.	AP	BN	BR	CE	CR	GB	GF	GR	LT	OG	PC	PO	No. of Import	% of Total
Countries = 15					Impo	orted S	Samp	les						
Australia										3			3	<0.1
Bahamas							1						1	<0.1
Brazil	2												2	<0.1
Canada	5		3	3	18							10	39	0.5
Chile	7							258			147		412	5.6
Colombia		104											104	1.4
Costa Rica		144											144	2.0
Ecuador		141											141	1.9
Guatemala		68				1							69	0.9
Honduras		58						1					59	0.8
Mexico		61	14	5	8	108		29	4	1	1		231	3.2
New Zealand	8										1		9	0.1
Panama		13											13	0.2
South Africa	1												1	<0.1
Venezuela		9											9	0.1
No. of Import	23	598	17	8	26	109	1	288	4	4	149	10	1237	
% of Total (nearest %)	4	96	3	1	4	19	<1	46	1	1	40	2		16.9
Part 3.	AP	BN	BR	CE	CR	GB	GF	GR	LT	OG	PC	PO	No. of Unknown	% of Total

					Unki	nown	Origi	า						
No. of Unknown Origin	1	22	3	5	1	11	29	13	1	17	6	5	114	
% of Total (nearest %)	<1	4	<1	1	<1	2	5	2	<1	3 TO T	2 FAL	1 =	7328	1.6
Commodities														
AP - Apples	GF	Gra	pefru	it										
BN - Bananas	GR	- Gra	pes											
BR - Broccoli	LT -	Lettu	lce											
CE - Celery	OG	- Ora	inges											
CR - Carrots	PC ·	- Pea	ches											
GB - Green Beans	PO	- Pota	atoes											

	Total	No. of	% of	Minimum	Maximum	
	Number	Samples with	Samples with	Value	Value	Tolerance
Pesticide	of Samples	Detections	Detections	Detected, ppm	Detected, ppm	Level, ppm
1. 2,4-D						
Apples	622	7	1.1	0.005	0.092	5
Grapefruit	630	12	1.9	0.006	0.035	5
Grapes	623	2	0.3	0.01	0.037	0.5
Oranges	634	23	3.6	0.01	0.039	5
Peaches	132	4	3.0	0.01	0.01	0.2
Potatoes	626	<u>27</u>	4.3	0.006	0.085	0.2
Total		75				
2. Acephate						
Celery	634	169	26.7	0.005	1.3	10
Green Beans	562	108	19.2	0.005	2.4	3
Grapes (V-1)	621	1	0.2	0.005	0.005	NT*
Lettuce	647	<u>75</u>	11.6	0.005	0.099	10
Total		353				
3. Aldicarb Sulfoxide						
Bananas	614	1	0.2	0.065	0.065	0.3
Grapefruit	624	7	1.1	0.065	0.15	0.3
Oranges	623	<u>3</u>	0.5	0.065	0.065	0.3
Total		11				
4. Anilazine						
Celery	637	<u>3</u>	0.5	0.01	0.01	10
Total		3				
5. Azinphos methyl						
Apples	643	208	32.3	0.023	1.8	2.0
Broccoli	630	2	0.3	0.04	0.12	2.0
Celery	634	6	0.9	0.025	0.2	2.0
Green Beans	562	3	0.5	0.04	0.12	2.0
Grapefruit	632	1	0.2	0.05	0.05	2.0
Grapes	621	18	2.9	0.025	0.68	5.0
Oranges	633	1	0.2	0.05	0.05	2.0
Peaches	367	<u>78</u>	21.3	0.025	0.93	2.0
Total		317				

	Total	No. of	% of	Minimum	Maximum	
	Number	Samples with	Samples with	Value	Value	Tolerance
Pesticide	of Samples	Detections	Detections	Detected, ppm	Detected, ppm	Level, ppm
6. Benfluralin						
Carrots (V-3)	642	3	0.5	0.015	0.033	NT*
Total		3				
7. Benomyl						
Apples	638	110	17.2	0.05	3.1	7.0
Bananas	610	4	0.7	0.05	0.12	0.2***
Broccoli	611	2	0.3	0.05	0.05	0.2
Green Beans (X-3)	561	106	18.9	0.05	3.4	2.0
Peaches	132	<u>31</u>	23.5	0.05	0.64	15.0
Total		253				
8. Captan						
Apples	648	76	11.7	0.005	0.46	25
Celery	637	8	1.3	0.02	0.069	50
Green Beans	563	1	0.2	0.27	0.27	25
Grapes	619	189	30.5	0.01	1.4	50
Lettuce	645	2	0.3	0.01	0.48	100
Peaches	366	<u>34</u>	9.3	0.01	0.85	50
Total		310				
9 Carbaryl						
	650	145	22.3	0.007	0.8	10.0
Apples	614	145	22.5	0.007	0.065	10.0
Broccoli	622	11	1.8	0.005	0.005	10
Celeny	620	15	2.4	0.02	0.49	10
Green Beans	554	24	2. 4 13	0.015	0.20	10
Grapefruit	624	24	4.0 5 /	0.02	0.82	10
Grapes	612	17	2.8	0.02	2.6	10
Oranges	623	52	83	0.007	0.5	10
Peaches	358	32 45	12.6	0.007	1.3	10
Potatoes	638	-1	0.2	0.007	0.065	0.2
	030	⊥ 345	0.2	0.005	0.005	0.2
i otai		575				
10. Carbofuran						
Green Beans (V-1)	554	<u>1</u>	0.2	0.034	0.034	NT*
Total		1				

Pesticide	Total Number of Samples	No. of Samples with Detections	% of Samples with Detections	Minimum Value Detected, ppm	Maximum Value Detected, ppm	Tolerance Level, ppm
11. 3-Hydroxycarbofura	n (carbofuran	metabolite)				
Grapes	612	<u>5</u>	0.8	0.073	0.17	0.2
Total		5				
12. Chlorothalonil						
Broccoli	630	7	1.1	0.002	0.27	5
Celery	637	318	49.9	0.005	7.1	15
Carrots	642	1	0.2	0.059	0.059	1
Green Beans	563	65	11.5	0.007	1.6	5
Lettuce (V-3)	645	3	0.5	0.012	0.025	NT*
Peaches	366	<u>1</u>	0.3	0.025	0.025	0.5
Total		395				
13. Chlorpropham						
Apples (V-2)	648	2	0.3	0.013	0.02	NT*
Green Beans	563	1	0.2	0.033	0.033	0.3
Potatoes	646	<u>399</u>	61.8	0.013	9.7	50
Total		402				
14. Chlorpyrifos						
Apples	643	124	19.3	0.005	0.36	1.5
Broccoli	630	9	1.4	0.005	0.3	1
Celery (V-6)	634	6	0.9	0.005	0.018	NT*
Carrots (V-3)	641	3	0.5	0.005	0.005	NT*
Green Beans (X-2)	562	5	0.9	0.005	0.38	0.05
Grapefruit	632	2	0.3	0.005	0.005	1.0
Grapes	621	28	4.5	0.005	0.15	0.5
Oranges	633	30	4.7	0.003	0.014	1.0
Peaches (X-5)	367	<u>42</u>	11.4	0.005	0.18	0.01
Total		250				
15. DCPA						
Broccoli	630	102	16.2	0.003	0.035	5
Celery (V-14)	637	14	2.2	0.003	0.054	NT*
Green Beans	563	19	3.4	0.012	0.12	2
Lettuce	645	<u>28</u>	4.3	0.002	0.11	2
Total		163				

	Total	No. of	% of	Minimum	Maximum	
Pesticide	Number of Samples	Samples with Detections	Samples with Detections	Value Detected, ppm	Value Detected, ppm	l olerance Level, ppm
16. DDD (DDT metabolite	5)					
Carrots	642	1	0.2	0.042	0.042	3
Total		1				-
17. DDE						
Broccoli	630	5	0.8	0.002	0.012	0.5
Celery	637	45	7.1	0.002	0.046	0.5
Carrots	642	245	38.2	0.002	0.21	3
Green Beans	563	3	0.5	0.002	0.013	0.2
Grapes	619	3	0.5	0.005	0.011	0.05
Lettuce	645	16	2.5	0.004	0.051	0.5
Potatoes	646	<u>58</u>	9.0	0.002	0.033	1
Total		375				
18. DDT						
Carrots	642	23	3.6	0.01	0.083	3
Potatoes	646	<u>8</u>	1.2	0.01	0.013	1
Total		31				
19. Demeton S						
Apples	643	<u>1</u>	0.2	0.01	0.01	0.75
Total		1				
20. Diazinon						
Apples	643	15	2.3	0.003	0.33	0.5
Celery	634	61	9.6	0.005	0.3	0.7
Carrots	641	30	4.7	0.005	0.042	0.75
Grapes	621	3	0.5	0.007	0.016	0.75
Lettuce	647	17	2.6	0.005	0.51	0.7
Oranges	633	2	0.3	0.005	0.007	0.7
Peaches	367	<u>39</u>	10.6	0.005	0.066	0.7
Total		167				

	Total	No. of	% of	Minimum	Maximum	
Destiside	Number	Samples with	Samples with	Value	Value	Tolerance
Pesucide	or samples	Detections	Detections	Delected, ppm	Delected, ppm	Level, ppm
21. Dicloran						
Apples (V-2)	648	2	0.3	0.005	0.013	NT*
Celery	637	132	20.7	0.005	8.1	15
Carrots	642	2	0.3	0.008	0.95	10
Green Beans	563	3	0.5	0.008	0.048	20
Grapes	619	32	5.2	0.005	0.71	10
Peaches	366	153	41.8	0.005	12	20
Potatoes	646	<u>2</u>	0.3	0.024	0.057	0.25
Total		326				
22. Dicofol	0.40	10				_
Apples	648	18	2.8	0.008	0.14	5
Grapetruit	616	1	0.2	0.045	0.045	10
Grapes	619	11	1.8	0.008	1.5	5
Oranges	591	1	0.2	0.081	0.081	10
Peaches	366	<u>2</u>	0.5	0.05	0.05	10
Total		33				
23. Dimethoate						
Apples	643	54	8.4	0.004	0.6	2
Broccoli	630	5	0.8	0.004	0.21	2
Celery	634	4	0.6	0.004	0.098	2
Green Beans	562	41	7.3	0.004	1.4	2
Grapes	621	67	10.8	0.003	0.44	1
Lettuce	647	69	10.7	0.004	0.47	2
Oranges	633	7	1.1	0.004	0.018	2
Peaches (V-2)	367	2	0.5	0.005	0.68	NT*
Potatoes	645	<u>2</u>	0.3	0.005	0.005	0.2
Total		251				
24 Diphonylomine						
	652	242	52.5	0.005	1 9	10
Apples	000	১ 4 ১ 1	02.0	0.005	4.0 0.015	
Grappe (V/ 1)	020	1	0.2	0.015	0.015	1N I NT*
Boochoo **	2007	1	0.2	0.15	0.15	IN I NT*
	300		0.5	0.015	0.015	INT
Iotai		340				

		Total	No. of	% of	Minimum	Maximum	
		Number	Samples with	Samples with	Value	Value	Tolerance
Pes	ticide	of Samples	Detections	Detections	Detected, ppm	Detected, ppm	Level, ppm
25.	Disulfoton						
	Broccoli	630	1	0.2	0.11	0.11	0.75
	Total		1				
26.	Endosulfans						
	Apples	648	94	14.5	0.003	1.3	2.0
	Broccoli	630	20	3.2	0.003	0.054	2.0
	Celery	637	26	4.1	0.005	0.35	2.0
	Carrots	642	17	2.6	0.003	0.09	0.2
	Green Beans	563	227	40.3	0.002	1.22	2.0
	Grapes	619	41	6.6	0.005	0.12	2.0
	Lettuce	645	136	21.1	0.002	1.7	2.0
	Peaches	366	25	6.8	0.005	0.12	2.0
	Potatoes	646	<u>73</u>	11.3	0.005	0.1	0.2
	Total		659				
27.	Ethion						
	Apples	643	12	1.9	0.003	1	2.0
	Grapefruit	632	45	7.1	0.002	0.031	2.0
	Oranges	633	36	5.7	0.002	0.089	2.0
	Total		93				
28	Formetanate HCI						
20.	Annles	298	4	13	0.085	0.23	3
	Peaches	117	2	1.7	0.07	0.26	5
	Total		6				-
29	Hexachlorobenzene						
23.	Carrots $(1/-1)$	642	1	0.2	0.006	0.006	NT*
	Total	042	⊥ 1	0.2	0.000	0.000	IN I
20	Imozolil						
30.	Apples (V. 1)	652	1	0.2	0.05	0.05	NIT*
	Apples (V-1) Bananas (V-1)	620	50	0.2	0.05	0.00	ואו ח 20***
	Granefruit	624	184	9.0 20 0	0.015	0.21	10.20
	Orapenuit	636	311	29.0 18 0	0.004	0.45	10.0
	Total	000	555	-0.3	0.003	0.00	10.0

		Total	No. of	% of	Minimum	Maximum	
Doc	sticido	Number of Samples	Samples with	Samples with	Value Detected ppm	Value Detected ppm	Tolerance
res	SIICIQE	of Samples	Delections	Detections	Delected, ppm	Delected, ppm	Level, ppm
31.	Iprodione						
•	Apples (V-4)	648	4	0.6	0.014	0.11	NT*
	Broccoli	630	1	0.2	0.16	0.16	25.0
	Celerv (V-6)	637	71	11.1	0.014	0.4	NT* (S-18)
	Carrots	642	186	29.0	0.014	0.41	5.0
	Green Beans	563	7	1.2	0.04	0.56	2.0
	Grapes	619	197	31.8	0.014	2.7	60.0
	Lettuce	645	4	0.6	0.025	0.35	25.0
	Peaches	366	237	64.8	0.014	11	20.0
	Total		707				
32.	Lindane						
	Celerv	637	5	0.8	0.005	0.098	1
	Lettuce	645	1	0.2	0.005	0.005	3
	Peaches	366	1	0.3	0.005	0.005	1
	Total		7				
33.	Linuron						
	Carrots	642	14	2.2	0.005	0.067	1
	Total	0.2	14		0.000	0.001	
34.	Malathion						
	Apples	643	1	0.2	0.006	0.006	8
	Celerv	634	7	1.1	0.003	0.084	8
	Carrots	641	1	0.2	0.006	0.006	8
	Lettuce	647	1	0.2	0.005	0.005	8
	Oranges	633	2	0.3	0.005	0.005	8
	Potatoes	645	1	0.2	0.006	0.006	8
	Total		13				
35.	Methamidophos						
	Broccoli	630	6	1.0	0.006	0.16	1.0
	Celery	634	70	11.0	0.004	0.12	1
	Green Beans @ (V-8)	562	113	20.1	0.004	0.49	NT*
	Grapes (V-1)	621	1	0.2	0.004	0.004	NT*
	Lettuce	647	21	3.2	0.003	0.049	1.0
	Potatoes	645	<u>5</u>	0.8	0.005	0.028	0.1
	Total		216				

		Total	No. of	% of	Minimum	Maximum	
		Number	Samples with	Samples with	Value	Value	Tolerance
Pes	sticide	of Samples	Detections	Detections	Detected, ppm	Detected, ppm	Level, ppm
36.	Methidathion						
	Grapefruit	632	3	0.5	0.004	0.014	2.0
	Oranges	633	<u>35</u>	5.5	0.002	0.034	2.0
	Total		38				
37.	Methiocarb						
	Apples (V-1)	650	1	0.2	0.35	0.35	NT*
	Potatoes (V-3)	638	3	0.5	0.08	0.13	NT*
	Total		4				
38.	Methomyl						
	Apples	650	13	2.0	0.15	0.15	1
	Broccoli	622	3	0.5	0.015	0.065	3
	Celery	620	35	5.6	0.011	0.52	3
	Green Beans	554	23	4.2	0.013	0.49	2
	Grapefruit	624	1	0.2	0.065	0.065	2
	Grapes	612	39	6.4	0.013	2	5
	Lettuce	639	27	4.2	0.013	1.6	5
	Oranges	623	6	1.0	0.065	0.28	2
	Peaches	358	4	1.1	0.065	0.21	5
	Potatoes	638	1	0.2	0.065	0.065	0.2
	Total		152				
39.	Methoxychlor						
	Apples	648	45	6.9	0.01	1.5	14
	Lettuce	645	1	0.2	0.015	0.015	14
	Total		46				
40.	Mevinphos						
	Apples	643	4	0.6	0.003	0.13	0.5
	Celery	634	7	1.1	0.002	0.025	1.0
	Grapes	621	4	0.6	0.003	0.005	0.5
	Lettuce (X-1)	647	40	6.2	0.005	0.53	0.5
	Peaches	367	<u>1</u>	0.3	0.08	0.08	1.0
	Total		56				

	Total	No. of	% of	Minimum	Maximum	
	Number	Samples with	Samples with	Value	Value	Tolerance
Pesticide	of Samples	Detections	Detections	Detected, ppm	Detected, ppm	Level, ppm
41. Myclobutanil						
Apples	653	5	0.8	0.025	0.3	0.5
Grapes	587	110	18.7	0.015	0.34	1.0
Peaches	366	1	0.3	0.015	0.015	2.0
Total		116				
42. O-Phenylphenol						
Apples	653	41	6.3	0.015	9.6	25
Carrots	637	7	1.1	0.015	0.036	20
Grapefruit	634	13	2.1	0.015	0.055	10
Oranges	636	47	7.4	0.015	0.057	10
Peaches	366	14	3.8	0.005	0.042	20
Potatoes (V-1)	637	1	0.2	0.12	0.12	NT*
Total		123				
43. Omethoate #						
Apples	643	40	6.2	0.005	0.1	2
Broccoli	630	2	0.3	0.014	0.092	2
Celery	634	6	0.9	0.005	0.026	2
Green Beans	562	30	5.3	0.014	0.21	2
Grapes	621	60	9.7	0.005	0.38	1
Lettuce	647	12	1.9	0.005	0.3	2
Peaches (V-1)	367	<u>1</u>	0.3	0.089	0.089	NT*
Total		151				
44. Ovex						
Apples (V-1)	648	1	0.2	0.14	0.14	NT*
Total		1				
45. Oxamyl						
Apples	650	45	6.9	0.014	0.68	2
Bananas	614	1	0.2	0.065	0.065	0.3
Celery	620	140	22.6	0.014	0.82	3
Green Beans (V-4)	554	4	0.7	0.057	0.22	NT*
Grapefruit	624	1	0.2	0.3	0.3	3
Oranges	623	9	1.4	0.065	0.31	3
Peaches (V-1)	358	1	0.3	0.014	0.014	NT*
Potatoes	638	1	0.2	0.065	0.065	0.1
Total		202				

	Total	No. of	% of	Minimum	Maximum	
	Number	Samples with	Samples with	Value	Value	Tolerance
Pesticide	of Samples	Detections	Detections	Detected, ppm	Detected, ppm	Level, ppm
46. Parathion						
Apples	643	2	0.3	0.003	0.015	1
Celery	634	4	0.6	0.022	0.055	1
Carrots	641	5	0.8	0.003	0.013	1
Green Beans	562	1	0.2	0.38	0.38	1
Grapes	621	6	1.0	0.003	0.045	1
Lettuce	647	2	0.3	0.009	0.029	1
Oranges	633	1	0.2	0.009	0.009	1
Peaches	367	1	0.3	0.14	0.14	1
Total		22				
47 Parathion methyl						
Annles	643	35	54	0 004	0 074	1
Celeny	634	7	1 1	0.004	0.16	1
Carrots	641	2	0.3	0.005	0.10	1
Grapes	621	17	27	0.005	1	1
Peaches	367	79	21.7	0.005	0 69	1
Total	007	140	21.0	0.000	0.00	·
48. Pentachlorobenzene						
Carrots (V-1)	642	1	0.2	0.01	0.01	NT*
Green Beans	563	1	0.2	0.01	0.01	0.1
Potatoes	646	<u>3</u>	0.5	0.003	0.009	0.1
Total		5				
49. Pentachlorophenyl						
Potatoes	646	<u>1</u>	0.2	0.005	0.005	0.1
Total		1				
50. Permethrins						
Broccoli	630	13	2,1	0.025	0.2	1.0
Celerv	637	268	42.1	0.008	1.1	5.0
Green Beans (V-7)	563	7	1.2	0.016	0.2	NT*
Lettuce	645	76	11.8	0.008	6.7	20.0
Peaches	366	12	3.3	0.016	0.12	5.0
Total		376	- • -			

		Total	No. of	% of	Minimum	Maximum	
		Number	Samples with	Samples with	Value	Value	Tolerance
Pes	ticide	of Samples	Detections	Detections	Detected, ppm	Detected, ppm	Level, ppm
51.	Phorate Sulfone						
•	Potatoes	645	2	0.3	0.005	0.005	0.5
	Total	0.0	2	010	0.000	0.000	010
			_				
52.	Phosmet						
•	Apples	643	55	8.6	0.013	0.9	10
	Carrots (V-1)	641	1	0.2	0.015	0.015	NT*
	Grapes	621	3	0.5	0.013	0.17	10
	Oranges	633	2	0.3	0.013	0.04	5
	Peaches	367	34	9.3	0.013	1.4	10
	Total		95				
53.	Propargite						
	Apples	282	98	34.8	0.015	2.4	3
	Grapes	190	35	18.4	0.015	0.74	10
	Oranges	195	1	0.5	0.05	0.05	5
	Peaches	96	<u>32</u>	33.3	0.062	1.6	7
	Total		166				
E A	Quintozono						
54.		627	1	0.2	0.005	0.005	NT*
	Green Beans	563	12	0.2	0.005	0.005	0.1
	Detatoos	505	12	2.1	0.005	0.013	0.1
	Total	040	 15	0.5	0.005	0.007	0.1
55.	Thiabendazole						
	Apples	653	404	61.9	0.015	7.6	10
	Bananas (X-2)	620	339	54.7	0.006	0.53	0.4***
	Carrots	637	5	0.8	0.1	0.21	10
	Green Beans (V-12)	564	12	2.1	0.006	0.19	NT*
	Grapefruit	634	399	62.9	0.005	0.77	10
	Grapes	587	1	0.2	0.015	0.015	10
	Lettuce (V-1)	646	1	0.2	0.015	0.015	NT*
	Oranges	636	386	60.7	0.006	1.7	10
	Peaches (V-3)	366	3	0.8	0.004	0.065	NT*
	Potatoes	637	<u>139</u>	21.8	0.012	2.1	10
	Total		1689				

Pesticide	Total Number of Samples	No. of Samples with Detections	% of Samples with Detections	Minimum Value Detected, ppm	Maximum Value Detected, ppm	Tolerance Level, ppm	
56. Toxaphene Carrots Total	642	1 1	0.2	0.92	0.92	7	
57. Trifluralin Carrots Total	642	<u>138</u> 1 38	21.5	0.01	0.28	1.0	
58. Vinclozolin							
Green Beans (V-3)	563	5	0.9	0.008	0.07	NT* (S-18)	
Grapes	619	90	14.5	0.008	0.88	6.0	
Peaches	366	<u>7</u>	1.9	0.007	0.62	25.0	
Total		102					
Total No. of Different Re	sidues Deter	ted.	58				
Total No. of Samples An	alyzed:		7328				

(V) Residue was found where no tolerance was established by EPA. Following V are the number of occurrences.

(X) Residue was found which exceeds EPA tolerance. Following X are the number of occurrences.

NT* No tolerance level was set for that pesticide/commodity pair.

NT* (S-18) The number of residues detected is not the same as the number of violations due to exemptions under 40 CFR, part 66.1 of FIFRA Section 18 (crisis exemptions).

** Estimated values reported to FDA for informational purposes only.

*** Tolerance applies to banana pulp only.

@ All other residues were detected in combination with acephate, for which a tolerance exists.

Tolerances listed are for combined residues of dimethoate and omethoate.

APPENDIX C. CONCENTRATION PERCENTILES vs. TOLERANCE in COMMODITY/PESTICIDE PAIRS

(Pairs with Residue Detections in at Least 10 Percent of Samples)

Commodity	% of Samples with Detections	50th	Percentiles 75th	90th	Maximum Value Detected, ppm	Ratio of Tolerance to 90th Percentile
1 Apples						
Azinphos-methyl	32.3	*	0.038	0.095	1.8	0.048
Renomyl	17.2	*	*	0.095	3.1	0.040
Captan	11.2	*	*	0.10	0.46	0.001
Carbaryl	22.3	*	*	0.011	0.8	0.001
Chlorovrifos	19.3	*	*	0.015	0.36	0.01
Diphenylamine	52.5	0.023	0.78	1.5	4.8	0.15
Endosulfans	14.5	*	*	0.01	1.3	0.005
Proparaite	34.8	*	0 16	0.01	2.4	0.16
Thiabendazole	61.9	0.21	0.6	1.1	7.6	0.11
2. Bananas						
Thiabendazole	54.7	0.017	0.075	0.13	0.53	0.33 @
3. Broccoli						
DCPA	16.2	*	*	0.014	0.035	0.003
4. Carrots						
DDE	38.2	*	0.013	0.027	0.21	0.009
Iprodione	29	*	0.028	0.085	0.41	0.017
Trifluralin	21.5	*	*	0.048	0.28	0.048
5. Celery						
Acephate	26.7	*	0.008	0.078	1.3	0.008
'Chlorothalonil	49.9	*	0.062	0.21	7.1	0.014
Dicloran	20.7	*	*	0.15	8.1	0.01
Iprodione	11.1	*	*	0.028	0.40	**
Methamidophos	11	*	*	0.004	0.12	0.004
Oxamyl	22.6	*	*	0.105	0.82	0.035
Permethrins	42.1	*	0.053	0.11	1.1	0.022
6. Grapefruit						
Imazalil	29	*	0.023	0.12	0.45	0.012
Thiabendazole	62.9	0.044	0.12	0.23	0.77	0.023

APPENDIX C. CONCENTRATION PERCENTILES vs. TOLERANCE in COMMODITY/PESTICIDE PAIRS

(Pairs with Residue Detections in at Least 10 Percent of Samples)

	% of		Densentiles		Maximum	Ratio of
Commodity	Detections	50th	75th	90th	Detected, ppm	90th Percentile
7. Grapes						
Captan	30.5	*	0.027	0.16	1.4	0.003
Dimethoate	10.8	*	*	0.004	0.44	0.004
Iprodione	31.8	*	0.048	0.20	2.7	0.003
Myclobutanil	18.7	*	*	0.041	0.34	0.041
Propargite	18.4	*	*	0.163	0.74	0.016
Vinclozolin	14.5	*	*	0.069	0.88	0.012
8. Green Beans						
Acephate	19.2	*	*	0.15	2.4	0.05
Benomyl	18.9	*	*	0.19	3.4	0.095
Chlorothalonil	11.5	*	*	0.019	1.6	0.004
Endosulfans	40.3	*	0.033	0.16	1.22	0.08
Methamidophos	20.1	*	*	0.056	0.49	**
9. Lettuce						
Acephate	11.6	*	*	0.006	0.099	0.001
Dimethoate	10.7	*	*	0.004	0.47	0.002
Endosulfans	21.1	*	*	0.022	1.7	0.011
Permethrins	11.8	*	*	0.057	6.7	0.003
10. Oranges						
Imazalil	48.9	*	0.091	0.19	0.85	0.019
Thiabendazole	60.7	0.05	0.15	0.30	1.7	0.03
11. Peaches						
Azinphos-methvl	21.3	*	*	0.091	0.93	0.046
Benomvl	23.5	*	*	0.17	0.64	0.011
Carbarvl	12.6	*	*	0.039	1.3	0.004
Chlorpyrifos	11.4	*	*	0.006	0.18	0.55
Diazinon	10.6	*	*	0.004	0.066	0.005
Dicloran	41.8	*	0.21	1.7	12	0.085
Iprodione	64.8	0.19	0.6	1.2	11	0.06
Parathion-methvl	21.5	*	*	0.038	0.69	0.038
Propargite	33.3	*	0.19	0.35	1.6	0.05

APPENDIX C. CONCENTRATION PERCENTILES vs. TOLERANCE in COMMODITY/PESTICIDE PAIRS

(Pairs with Residue Detections in at Least 10 Percent of Samples)

	% of Samples with		Percentiles		Maximum Value	Ratio of Tolerance to
Commodity	Detections	50th	75th	90th	Detected, ppm	90th Percentile
12. Potatoes						
Chlorpropham	61.8	0.084	1.3	2.9	9.7	0.058
Endosulfans	11.3	*	*	0.006	0.10	0.003
Thiabendazole	21.8	*	*	0.26	2.1	0.026

(*) Value is Below the limit of detection (LOD).

(**) Ratio is not calculated if tolerance is not established.

@ Tolerance (0.40) used in ratio applies to banana pulp only.

APPENDIX D. CUMULATIVE DISTRIBUTIONS OF RESIDUE CONCENTRATIONS FOR SELECTED COMMODITY/PESTICIDE PAIRS

Apples / Diphenylamine

APPENDIX D.(CONT'D) CUMULATIVE DISTRIBUTIONS OF RESIDUE CONCENTRATIONS FOR SELECTED COMMODITY/PESTICIDE PAIRS

Celery / Chlorothalonil

Grapefruit / Thiabendazole

APPENDIX D.(CONT'D) CUMULATIVE DISTRIBUTIONS OF RESIDUE CONCENTRATIONS FOR SELECTED COMMODITY/PESTICIDE PAIRS

Oranges / Imazalil

Peaches / Dicloran

APPENDIX D.(CONT'D) CUMULATIVE DISTRIBUTIONS OF RESIDUE CONCENTRATIONS FOR SELECTED COMMODITY/PESTICIDE PAIRS

Peaches / Iprodione

Potatoes / Chloropropham

(Pairs with Residue Detections in at Least 25 Percent of Samples)

Azinphos Methyl/Apples

(Pairs with Residue Detections in at Least 25 Percent of Samples)

Chlorothalonil/Celery

(Pairs with Residue Detections in at Least 25 Percent of Samples)

Chlorpropham/Potatoes

(Pairs with Residue Detections in at Least 25 Percent of Samples)

Diphenylamine/Apples

(Pairs with Residue Detections in at Least 25 Percent of Samples)

Endosulfans/Green Beans

Imazalil/Grapefruit

(Pairs with Residue Detections in at Least 25 Percent of Samples)

Iprodione/Carrots 80 Percentage of Occurrences 642 samples tested 186 detections (29.0%) min .014 ppm - max .41 ppm 60 Tolerance 5.0 ppm 40 20 0 .10-.50 ND * .001-.009 .026-.050 .051-.099 .51-1.0 .010-.025 1.1-9.9 10-above **Concentration Ranges (ppm)**

(Pairs with Residue Detections in at Least 25 Percent of Samples)

Iprodione/Peaches

(Pairs with Residue Detections in at Least 25 Percent of Samples)

Permethrins/Celery

(Pairs with Residue Detections in at Least 25 Percent of Samples)

Propargite/Peaches

Thiabendazole/Apples

(Pairs with Residue Detections in at Least 25 Percent of Samples)

Thiabendazole/Bananas

Thiabendazole/ Grapefruit

(Pairs with Residue Detections in at Least 25 Percent of Samples)

Thiabendazole/Oranges

* Pesticides found in less than 25 percent of the samples are not included.

** These determinations were below the limit of detection of the reporting laboratory, and are not necessarily below .001ppm.

APPLES

No. of Residues Detected / Sample	Sarr #	nples %	No. of Different Residues	3 Most Frequently Detected Pesticides (*)
9	1	0.2	9	AZINPHOS-METHYL (1), METHOXYCHLOR (1), DIPHENYLAMINE (1) **AP
8	6	0.9	19	AZINPHOS-METHYL (5), DIMETHOATE (5), ENDOSULFANS (4)
7	14	2.1	20	AZINPHOS-METHYL (11), THIABENDAZOLE (11), DIPHENYLAMINE (10)
6	31	4.7	24	DIPHENYLAMINE (25), THIABENDAZOLE (25), AZINPHOS-METHYL (16)
5	60	9.2	24	THIABENDAZOLE (48), DIPHENYLAMINE (44), AZINPHOS-METHYL (28)
4	119	18.2	26	THIABENDAZOLE (87), DIPHENYLAMINE (81), AZINPHOS-METHYL (51)
3	169	25.8	24	THIABENDAZOLE (122), DIPHENYLAMINE (108), AZINPHOS-METHYL (55)
2	152	23.2	23	THIABENDAZOLE (78), DIPHENYLAMINE (63), AZINPHOS-METHYL (37)
1	82	12.5	17	THIABENDAZOLE (28), PROPARGITE (9), DIPHENYLAMINE (8)
0	20	3.1	0	
Total No. of Samples =	654			Total # of Residues = 2010

BANANAS

No. of Residues Detected / Sample	San #	nples %	No. of Different Residues	3 Most Frequently Detected Pesticides (*)
2	26	4.2	4	THIABENDAZOLE (26), IMAZALIL (23), BENOMYL (2)
1	353	56.9	5	THIABENDAZOLE (313), IMAZALIL (36), BENOMYL (2)
0	241	38.9	0	
Total No. of Samples =	620			Total # of Residues = 405

BROCCOLI

No. of Residues Detected / Sample	San #	nples %	No. of Different Residues	3 Most Frequently Detected Pesticides (*)
3	4	0.6	8	DCPA (4), CARBARYL (2), ENDOSULFANS (1)
2	19	3.0	11	DCPA (13), ENDOSULFANS (6), CARBARYL (4)
1	139	21.7	12	DCPA (85), ENDOSULFANS (13), PERMETHRINS (11)
0	478	74.7	0	
Total No. of Samples =	640			Total # of Residues = 189

CARROTS

No. of Residues	Sam #	nples %	No. of Different	3 Most Frequently Detected
Beteolea / Gample	"	70	rtcolddoo	
4	6	0.9	10	DDE (6), TRIFLURALIN (4), DDT (3)
3	57	8.9	12	DDE (51), IPRODIONE (47), TRIFLURALIN (36)
2	139	21.7	16	IPRODIONE (97), DDE (86), TRIFLURALIN (57)
1	214	33.3	13	DDE (102), TRIFLURALIN (41), IPRODIONE (39)
0	226	35.2	0	
Total No. of Samples =	642			Total # of Residues = 687

CELERY

No. of Residues Detected / Sample	San #	nples %	No. of Different Residues	3 Most Frequently Detected Pesticides (*)
6	6	0.9	13	PERMETHRINS (6), CHLOROTHALONIL (5), OXAMYL (5)
5	24	3.8	20	ACEPHATE (17), PERMETHRINS (17), DICLORAN (14)
4	81	12.7	20	CHLOROTHALONIL (57), PERMETHRINS (53), ACEPHATE (50)
3	140	22.0	21	CHLOROTHALONIL (96), PERMETHRINS (74), ACEPHATE (52)
2	185	29.0	20	CHLOROTHALONIL (93), PERMETHRINS (89), OXAMYL (44)
1	159	25.0	16	CHLOROTHALONIL (54), PERMETHRINS (29), ACEPHATE (18)
0	42	6.6	0	
Total No. of Samples =	637			Total # of Residues = 1,429

GRAPEFRUIT

No. of Residues Detected / Sample	Sam #	nples %	No. of Different Residues	3 Most Frequently Detected Pesticides (*)
4	1	0.2	4	ETHION (1), THIABENDAZOLE (1), CHLORPYRIFOS (1) **GF
3	32	5.0	8	THIABENDAZOLE (29), IMAZALIL (29), ETHION (23)
2	176	27.6	12	THIABENDAZOLE (161), IMAZALIL (131), ETHION (20)
1	251	39.4	6	THIABENDAZOLE (208), IMAZALIL (23), CARBARYL (15)
0	177	27.8	0	
Total No. of Samples =	637			Total # of Residues = 703

GRAPES

No. of Residues Detected / Sample	San #	nples %	No. of Different Residues	3 Most Frequently Detected Pesticides (*)
6	4	0.6	15	DIMETHOATE (3), OMETHOATE (3), CAPTAN (2)
5	20	3.2	17	DIMETHOATE (12), OMETHOATE (12), MYCLOBUTANIL (11)
4	31	4.9	16	DIMETHOATE (20), CAPTAN (19), VINCLOZOLIN (18)
3	80	12.7	23	IPRODIONE (44), CAPTAN (36), VINCLOZOLIN (26)
2	156	24.7	18	IPRODIONE (88), CAPTAN (87), VINCLOZOLIN (32)
1	181	28.7	20	IPRODIONE (46), MYCLOBUTANIL (46), CAPTAN (37)
0	159	25.2	0	
Total No. of Samples -	631			Total # of Residues - 981

Total No. of Samples = 631

Total # of Residues = 981

GREEN BEANS

No. of Residues Detected / Sample	San #	nples %	No. of Different Residues	3 Most Frequently Detected Pesticides (*)
8	1	0.2	8	ENDOSULFANS (1), CHLOROTHALONIL (1), METHAMIDOPHOS (1) **GB
7	3	0.5	10	ENDOSULFANS (3), DIMETHOATE (3), OMETHOATE (3)
6	5	0.9	10	CHLOROTHALONIL (5), ENDOSULFANS (4), METHAMIDOPHOS (4)
5	19	3.4	14	METHAMIDOPHOS (17), ENDOSULFANS (16), ACEPHATE (14)
4	32	5.7	16	METHAMIDOPHOS (25), ACEPHATE (25), ENDOSULFANS (21)
3	57	10.1	18	METHAMIDOPHOS (38), ACEPHATE (38), ENDOSULFANS (33)
2	115	20.3	16	ENDOSULFANS (82), BENOMYL (46), METHAMIDOPHOS (26)
1	139	24.6	13	ENDOSULFANS (67), BENOMYL (21), DCPA (14)
0	195	34.5	0	
Total No. of Samples -	566			Total # of Residues - 822

Total No. of Samples = 566

```
Total # of Residues = 822
```

LETTUCE

No. of Residues Detected / Sample	Sam #	nples %	No. of Different Residues	3 Most Frequently Detected Pesticides (*)
5	8	1.2	13	PERMETHRINS (7), MEVINPHOS (5), DIMETHOATE (4)
4	14	2.2	13	METHOMYL (8), PERMETHRINS (8), DIAZINON (7)
3	27	4.2	11	DIMETHOATE (19), ENDOSULFANS (12), ACEPHATE (10)
2	77	11.9	16	ENDOSULFANS (30), PERMETHRINS (27), ACEPHATE (25)
1	201	31.1	13	ENDOSULFANS (88), ACEPHATE (34), DIMETHOATE (26)
0	320	49.5	0	
Total No. of Samples =	647			Total # of Residues = 532

ORANGES

No. of Residues	San	nples	No. of Different	3 Most Frequently Detected
Detected / Sample	#	%	Residues	Pesticides (*)
6	1	0.2	6	DIAZINON (1), AZINPHOS-METHYL (1), ETHION (1) **OG
5	2	0.3	7	THIABENDAZOLE (2), METHIDATHION (2), IMAZALIL (2)
4	15	2.4	10	THIABENDAZOLE (15), IMAZALIL (14), CARBARYL (9)
3	83	13.0	13	THIABENDAZOLE (80), IMAZALIL (74), O-PHENYLPHENOL (21)
2	224	35.1	13	THIABENDAZOLE (194), IMAZALIL (170), CARBARYL (17)
1	182	28.5	11	THIABENDAZOLE (94), IMAZALIL (51), 2 4-D (6)
0	131	20.5	0	
Total No. of Samples -	638			Total # of Residues - 055

Total No. of Samples = 638

Total # of Residues = 955

PEACHES

No. of Residues Detected / Sample	San #	nples %	No. of Different Residues	3 Most Frequently Detected Pesticides (*)
6	6	1.6	14	CARBARYL (5), DICLORAN (5), PROPARGITE (5)
5	15	4.1	18	IPRODIONE (13), DICLORAN (11), PARATHION-METHYL (9)
4	66	17.9	20	IPRODIONE (58), DICLORAN (46), PARATHION-METHYL (25)
3	75	20.3	24	IPRODIONE (58), DICLORAN (36), AZINPHOS-METHYL (23)
2	112	30.4	18	IPRODIONE (71), DICLORAN (49), AZINPHOS-METHYL (21)
1	63	17.1	11	IPRODIONE (33), AZINPHOS-METHYL (8), DICLORAN (6)
0	32	8.7	0	
Total No. of Samples =	369			Total # of Residues = 887

POTATOES

No. of Residues Detected / Sample	San #	nples %	No. of Different Residues	3 Most Frequently Detected Pesticides (*)
4	4	0.6	7	CHLORPROPHAM (3), ENDOSULFANS (3), THIABENDAZOLE (3)
3	27	4.2	10	CHLORPROPHAM (23), THIABENDAZOLE (18), DDE (18)
2	152	23.5	14	CHLORPROPHAM (130), THIABENDAZOLE (100), ENDOSULFANS (30)
1	328	50.7	10	CHLORPROPHAM (243), ENDOSULFANS (33), THIABENDAZOLE (18)
0	136	21.0	0	

Total No. of Samples = 647

Total # of Residues = 729

* Number of samples with detectable residues

**AP - Additional compounds detected: Thiabendazole, Methomyl, Dimethoate, Omethoate, Benomyl, and Propargite

**GF - Additional compound detected: Imazalil

**GB - Additional compounds detected: Dimethoate, Omethoate, Carbofuran, Benomyl, and Acephate

**OG - Additional compounds detected: Thiabendazole, Chlorpyrifos, and Phosmet

Commodity	Tolerance, ppm	Concentration, ppm
1. Apples		
Chlorpropham	NT	0.02 (2)
Chlorpropham	NT	0.013 (2)
Dicloran	NT	0.013 (2)
Dicloran	NT	0.005 (2)
Imazalil	NT	0.05 (2)
Iprodione	NT	0.025 (2)
Iprodione *	NT	0.014 (2)
Iprodione *	NT	0.014 (2)
Iprodione	NT	0.11
Methiocarb	NT	0.35
Ovex	NT	0.14
2 Benence		
2. Dananas	0.3	0.01
Thisbandazala *	0.4	0.21
	0.4	0.53
mabendazoie	0.4	0.00
3. Carrots		
Benfluralin	NT	0.033
Benfluralin	NT	0.015 (2)
Benfluralin	NT	0.015 (2)
Chlorpyrifos	NT	0.005 (2)
Chlorpyrifos	NT	0.005 (2)
Chlorpyrifos	NT	0.005 (2)
НСВ	NT	0.006 (2)
Pentachlorobenzene	NT	0.01
Phosmet *	NT	0.015 (2)
4. Celerv		
Chlorpyrifos	NT	0.005 (2)
Chlorpyrifos	NT	0.018 (2)
Chlorpyrifos	NT	0.005 (2)
Chlorpyrifos	NT	0.005 (2)
Chlorpyrifos, DCPA (1)	NT. NT	0.005 (2), 0.005 (2)
Chlorpyrifos. DCPA (1)	NT. NT	0.005 (2), 0.005 (2)
DCPA	NT	0.012 (2)
DCPA	NT	0.010 (2)
DCPA	NT	0.012 (2)
DCPA	NT	0.012 (2)

Commodity	Tolerance, ppm	Concentration, ppm
4. Celery (cont'd)		
DCPA	NT	0.012 (2)
DCPA	NT	0.002 (2)
DCPA	NT	0.007 (2)
DCPA	NT	0.012 (2)
DCPA	NT	0.012 (2)
DCPA	NT	0.012 (2)
DCPA *	NT	0.013 (2)
DCPA *	NT	0.054
Iprodione	NT	0.014 (2)
Iprodione	NT	0.011 (2)
Iprodione	NT	0.025 (2)
Iprodione	NT	0.05 (2)
Iprodione	NT	0.18 (2)
Iprodione	NT	0.025 (2)
PCNB (Quintozene)	NT	0.005 (2)
5 Grapes		
Acenhate	NT	0.005 (2)
Diphenylamine *	NT	0.018 (2)
Methamidophos *	NT	0.004 (2)
6 Groon Boons		
Benomyl *	2.0	3.4
Benomyl *	2.0	23
Benomyl *	2.0	2.0
Carbofuran	NT	0.034
Chlorovrifos	0.05	0.38
Chlorpyrifos	0.05	0.36
Methamidophos	NT	0.006 (2)
Methamidophos	NT	0.025
Methamidophos	NT	0.006 (2)
Methamidophos *	NT	0.006 (2)
Methamidophos, Permethrins (1)	NT, NT	0.004 (2), 0.016 (2)
Oxamyl	NT	0.13 (2)
Oxamyl	NT	0.22
Oxamyl	NT	0.057
Oxamyl	NT	0.062
Permethrins	NT	0.2

Commodity	Tolerance, ppm	Concentration, ppm
6. Green Beans (cont'd)		
Permethrins	NT	0.14
Permethrins	NT	0.16
Permethrins	NT	0.2
Permethrins	NT	0.063
Permethrins	NT	0.2
Thiabendazole *	NT	0.05 (2)
Thiabendazole *	NT	0.05 (2), 0.15 (4)
Thiabendazole *	NT	0.21 (3), 0.05 (4) (2)
Thiabendazole *	NT	0.18 (3), 0.12 (4)
Thiabendazole *	NT	0.13 (2)
Thiabendazole *	NT	0.20 (3), 0.13 (4)
Thiabendazole *	NT	0.10 (3), 0.05 (4) (2)
Thiabendazole *	NT	0.12 (3), 0.05 (4) (2)
Thiabendazole *	NT	0.13 (3), 0.12 (4)
Thiabendazole *	NT	0.05 (2)
Thiabendazole *	NT	0.27 (3), 0.11 (4) (2)
Thiabendazole *	NT	0.20 (3), 0.10 (4)
Vinclozolin	NT	0.008 (2)
Vinclozolin	NT	0.029
Vinclozolin	NT	0.027
7 Lettuce		
Chlorothalanil	NT	0.012 (2)
Chlorothalonii	NT	0.012(2)
	NT	0.023 (2)
Movimboo	0.5	0.012 (2)
Thiabendazole	NT	0.015 (2)
8. Peaches		
Chlorpyrifos	0.01	0.019
Chlorpyrifos	0.01	0.014
Chlorpyrifos	0.01	0.079
Chlorpyrifos	0.01	0.012
Chlorpyrifos	0.01	0.18
Dimethoate	NT	0.005 (2)
Dimethoate, Omethoate (1) *	NT, NT	0.68, 0.089
Oxamyl	NT	0.014 (2)
Thiabendazole	NT	0.045 (2)
Thiabendazole *	NT	0.044 (2)
Thiabendazole *	NT	0.065 (2)

Commodity	Tolerance, ppm	Concentration, ppm
9. Potatoes		
Methiocarb	NT	0.12
Methiocarb	NT	0.08
Methiocarb	NT	0.13
o-Phenylphenol	NT	0.12

KEY

NT No tolerance established

* Imported commodity

(1) The sample reported contained two violative pesticide residues

(2) The reported concentration is above the limit of detection (LOD), but less than the limit of quantitation (LOQ)

(3) The samples are subsamples pulled at the same site from the same lot on the same day The results are from a laboratory which used a multiresidue screen

(4) The samples are the subsamples pulled at the same site from the same lot on the same day; The results are from a laboratory that uses a procedure specific for benzimidazole-type pesticides